
F Fermi National Accelerator Laboratory

FERMILAB-Pub-99/044-A

Higher Order Methods for Simulations on Quantum Computers

A. Sornborger and E. Stewart

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

February 2000

Submitted to Physical Review A

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

ar
X

iv
:q

ua
nt

-p
h/

99
03

05
5

 1
5

M
ar

 1
99

9

quant-ph/9903055
Fermilab Preprint: Pub-99/044-A

Higher Order Methods for Simulations

on Quantum Computers

A. T. Sornborger & E. D. Stewart,

NASA/Fermilab Astrophysics Group,

Fermi National Accelerator Laboratory,

Box 500,

Batavia, IL 60510-0500

USA

March 15, 1999

Abstract

To e�ciently implement many-qubit gates for use in quantum simulations on
quantum computers we develop and present methods reexpressing exp[�i(H1 +
H2 + : : :)�t] as a product of factors exp[�iH1�t], exp[�iH2�t], : : : which is ac-
curate to 3rd or 4th order in �t. The methods we derive are an extended form of
symplectic method and can also be used for the integration of classical Hamiltoni-
ans on classical computers. We derive both integral and irrational methods, and
�nd the most e�cient methods in both cases.

1 Introduction

Quantum computers have generated much interest recently, largely due to the result by
Shor [1] that they can factor integers in polynomial time.

In a quantum computer the analog of a logical bit is the qubit. The canonical example
of a qubit is a quantum spin. A quantum spin consists of two states, so a set of n spins
gives the quantum computer a 2n-dimensional Hilbert space.

To perform a calculation, one initializes the qubits, and then applies unitary logical
gates to the qubits. Unitary logical gates are realised in di�erent fashions depending
on the quantum computer hardware, but they are all represented mathematically by a
Hamiltonian acting on the quantum state of the qubits. In a typical quantum computer,
technology restricts the Hamiltonian to act on a small number of qubits at a time, maybe
two or three. A calculation is then built up of two- or three-qubit Hamiltonians, or gates,
acting sequentially on the qubits.

An important and di�cult to realise requirement is that the qubits maintain their
coherence throughout an entire calculation. Maintaining coherence in quantum com-
puters is a problem which has led to the development of error correcting codes (see [2]
and included references). These codes are possible due to the fact that one does not
need to know the state of a qubit in order to tell whether an error has occurred. With
some ingenuity, it is possible to determine what kinds of errors have occurred during the
course of a calculation and to correct the errors as the calculation proceeds. Simple error
correction codes have already been shown to work on small numbers of qubits [3].

E�ort has also been put into developing algorithms which make use of the quantum
computer's power. Shor's algorithm showed that quantum computers are more powerful
than classical computers, since integers cannot be factored in polynomial time on a
classical computer, whereas they can on a quantum computer. Grover has also devised
a method for searching a database in time proportional to the square root of the number
of items involved in the search [4].

In addition to research into e�ective algorithms for use on quantum computers, sim-
ulations of quantum systems have also been shown to be possible in polynomial time [5].
Indeed, this was the �rst area for which it was proposed that quantum computers could
fundamentally be more powerful (i.e. much faster) than classical computers [6].

This paper focuses on a problem which concerns simulational issues in quantum
computation. Essentially, we have developed methods for reexpressing exp[�i(H1 +
H2+ : : :)�t] as a product of factors exp[�iH1�t], exp[�iH2�t], : : : which is accurate to
3rd or 4th order in �t, as mentioned in the abstract.

A simulation on a quantum computer consists of applying an operator exp(�iHt) on
a set of qubits, where H, the Hamiltonian of the system of interest is suitably encoded
(and discretized) to act on the set of qubits. For many body systems, H is a sum of
terms. For instance, in a one-dimensional Ising spin model, the Hamiltonian is

H =
NX
n=1

~�n � ~�n+1 (1)

1

where N is the number of spins. Another example is the Hubbard model Hamiltonian,
used in the study of high-Tc superconductivity, which can be written [7] as the sum

H =
mX
i=1

V0ni"ni# +
X
hi;ji�

t0c
�
i�cj� (2)

where V0 is the strength of the potential, and ni� is the operator for the number of
fermions of spin � at site i. In the second (kinetic energy) term, the sum hi; ji indicates all
neighboring pairs of sites, t0 is the strength of the \hopping", and ci�, c�i� are annihilation
and creation operators, respectively, of a fermion at site i and spin �.

These models give examples in which a large simulation on a classical computer is
impossible due to the exponential increase in the size of the Hilbert space of the quantum
system with the number of lattice sites. A many-particle system can sometimes be
simulated with fewer qubits in �rst-quantized form [7], but in either case the Hamiltonian
H is a sum of terms, so our methods are equally applicable to both cases.

If the quantum computer cannot act on all spins at once, as is the case for quantum
gate arrays [8], it becomes necessary to �nd ways of approximating the application of the
above Hamiltonians with few-qubit gates. To second order, for instance, we �nd that

�
e�iH1�te�iH2�t : : : e�iHN�t

� �
e�iHN�t : : : e�iH2�te�iH1�t

�
= e�i2(H1+H2+:::HN)�t+O[(�t)3]

(3)
where Hn are two-qubit gates (e.g. �n � �n+1).

Below, we analyze the problem of deriving higher order methods of this type, and
�nd a set of equations which, once solved, give 3rd and 4th order methods analogous
to the above second-order method. We solve and present the formulae for 3rd and 4th
order methods as well as developing methods for approximating expressions involving
commutators, exp([A;B]). Since there is a large set of solutions to our equations, we
spend some e�ort trying to isolate and present only the most e�cient methods.

After presenting our methods, we then provide results from a simple application to
give the reader con�dence that our methods are correct.

This kind of method has been investigated elsewhere, for di�erent reasons, in the
context of Hamiltonian systems under the name `symplectic' method. In the section on
symplectic methods, we comment on what we have done di�erently from other inves-
tigations of symplectic methods, and why our methods are applicable to more general
problems. We then present a summary of our results in the conclusions section.

We also provide appendices with useful expressions used in the derivation of our
results, and some proofs of statements in the text.

2

2 Mathematical Analysis and Equations

We want to express exp
�PN

n=1An

�
as a product of individual exp (An)'s. In order to

do this, we use the Campbell-Baker-Hausdor� formula. The Campbell-Baker-Hausdor�
formula to 5th order is

exp (aA1) exp (aA2) = exp
�
a (A1 +A2) +

1

2
a2A12 +

1

12
a3 (A112 +A221) +

1

24
a4A1221

� 1

720
a5 (A11112� 2A21112� 6A11221� 6A22112� 2A12221+A22221) +O

�
a6
��

(4)

where
Akl:::mn � [Ak; [Al; : : : [Am; An] : : :]] (5)

To �nd combinations of operators expAi which approximate exp
�PN

n=1An

�
to some

order it is �rst necessary to choose a strategy for searching among the large number
of possible combinations. First of all, we cannot search brute force since there are too
many possible combinations, and, in any case, this would not give us a formula valid
for all N . Therefore, we pick a fundamental ordering of the product of exponentials
with parameters allowing for transposes of the entire product as well as raising all the
exponentials in the fundamental unit to the same power.

By iterating the Campbell-Baker-Hausdor� formula, we can get an expression for the
fundamental unit in terms of a single exponential

�
eaA1eaA2 : : : eaAN

��
= exp

1X
p=1

�apBp
N (6)

which de�nes the Bp
N in terms of the An. Here, p is an exponent on a, and a label on

the matrices Bp
N . We take � = �1.

Now combine a succession i = 1; : : : ; I of fundamental units with parameters ai and
�i. Again iterating Campbell-Baker-Hausdor� gives

exp

0
@ 1X
p=1

�1a
p
1B

p
N

1
A : : : exp

0
@ 1X
p=1

�Ia
p
IB

p
N

1
A = exp

 X
X

�XI B
X
N

!
(7)

The BX
N are generated from the Bp

N by commutation. X represents a label pq : : : rs where

Bpq:::rs
N � [Bp

N ; [B
q
N ; : : : [B

r
N ; B

s
N] : : :]] (8)

Bpq:::rs
N is of order p + q + : : :+ r + s. Up to 5th order we can take

X 2 f1; 2; 3; 12; 4; 13; 112; 5; 14; 23; 113; 221; 1112g (9)

These BX
N span the space of commutators of the Bp

N 's to 5th order and for N � 2 they
are independent. Formulae for the BX

2 in terms of A1 and A2 are given in Appendix A.2.
The �XI are de�ned in terms of �i and ai by Eq. (7). Here again, the X's are labels.

3

After some calculation, the Campbell-Baker-Hausdor� formula, Eq. (4), then gives

�pI =
IX

i=1

�iai
p (10)

for p = 1; : : : ; 5,

�pqI = �1

2
�pI�

q
I +

1

2

IX
i=1

ai
q�p h(�pi)2 � (�pi�1)

2
i

(11)

for pq = 12; 13; 14; 23,

�ppqI = �1

2
�pI�

pq
I � 1

6
(�pI)

2
�qI +

1

6

IX
i=1

ai
q�p h(�pi)3 � (�pi�1)

3
i

(12)

for ppq = 112; 113; 221 1,

�1112I = �1

2
�1I�

112
I � 1

3

�
�1I
�2
�12I � 1

24

�
�1I
�3
�2I +

1

24

IX
i=1

ai

��
�1i
�4 � �

�1i�1
�4�

(13)

For approximations to exp
�PN

n=1An

�
, we require all �XI = 0 except for �1I which is

the coe�cient of B1
N =

PN
n=1An, and which should be greater than zero.

An interesting feature of 3rd order methods is that they require inverses, i.e. they
require backward time evolution during part of the method.2 This can be proved using
Eq. (10) with p = 3. It has no nontrivial solutions when the product �iai is positive for
all i. Therefore for 3rd order methods, �iai must be negative for at least one i. From the
left hand side of Eq. (6), we see that this means that there must be at least one inverse.
Similarly, from Eqs. (10) with p = 3 and p = 4 it can be proved that 4th order methods
must have at least two inverses.

In Appendix A.1, we also prove the fact that for integral solutions �1I must be a
multiple of 2 for a 2nd order method, a multiple of 6 for a 3rd or 4th order method, and
a multiple of 30 for a 5th order method. Our searches suggest that the constraints on �1I
may actually be stronger; all 4th order methods that we have found have �1I a multiple
of 12, and we have not been able to �nd any 5th order methods.

In Section 7, we will consider approximation to exp[A1; A2] for which we require all
�XI = 0 except for �2I .

1For the purposes of calculating �221
I

, note that �21
I
� ��

12

I
.

2After this work was completed, we became aware that this point had also been noted in [9].

4

3 Numerical Method for Solution of the Equations

We solve our equations for both integer and irrational solutions, using di�erent methods
for each search.

Our method to solve Eqs. (10-12) for integers is to pick values of �i and ai and see
if they satisfy the equations. To do this we restrict the number of fundamental units by
�xing I. We also restrict the range of the ai's.

We start with Eq. (10), since, in this equation, order with respect to i does not
matter. So, for a given set of values, we need to consider only one permutation, not all
permutations of the values. This greatly reduces the size of the search.

Furthermore, we start by considering p = 1 and 3, since it is only the sign of �iai that
matters in these equations. This means we can consider only the sign of the combination
�iai, and not the signs of �i and ai individually. This reduces the search further. These
equations are particularly restrictive for the case of few inverses.

After solving the p = 1 and 3 equations, we introduce separate signs for the �i's and
ai's and solve the equation with p = 2, and p = 4 for the 4th order case.

Finally, into the restricted set of solutions to Eq. (10) we introduce permutations of
the �i's and ai's with respect to the index i and solve Eqs. (10-12).

We solved Eqs (10) and (11) analytically to �nd the unique shortest irrational 3rd
order method. To �nd 4th order irrational methods, we made a symmetric ansatz and
solved Eqs. (10-12) analytically to �nd the shortest symmetric irrational 4th order meth-
ods. We checked numerically, using the globally convergent technique prescribed in [10],
that these are all the shortest irrational 4th order methods.

The methods are presented in Section (5).

4 Criteria for Selecting Among the Solutions

With our strategy for �nding solutions to Eqs. (10-12) we �nd a larger number of solutions
than we can easily present. We need to select solutions to present and we also want to
present solutions which are in some sense optimal. To do this, we consider the form of
the operator resulting from a given method

IY
j=1

�
e�iajA1�t e�iajA2�t : : : e�iajAN �t

��j
= exp

"
�i�1I

NX
n=1

An�t+ r(�i�t)o+1
#

(14)

where �t� 1 is a time step, o is the order of the method, and

r =
X
X

�XI B
X
N (15)

where X 2 f4; 13; 112g for a 3rd order method and X 2 f5; 14; 23; 113; 221; 1112g for a
4th order method.

5

r is an error which takes values in the vector space of the commutators for which we
do not have a metric. Therefore, we make the ad hoc choice of basis that is given in
Appendix A.3. This allows us to replace r by a single real scalar R as is also described
in Appendix A.3. The error from the method can then be taken to be

E = nR�to+1 (16)

where n is the number of times we apply the approximate method.
If the physical time we want to simulate is Tp, then

Tp = nD�t (17)

where D � �1I is given by the method.
The computer time it takes for a given simulation can be written

Tc = nINtg + nLNts (18)

where I is the number of fundamental units in the method and N is the number of terms
in a unit, tg is the time it takes to make the gate change,

L �
IX

i=1

jaij (19)

so that LN is the total time the gates are applied for in the method, and ts is the time
each individual gate is applied for. The time an individual gate is applied for will be
ts = b�t, where b is a proportionality constant dictated by the actual couplings in the
quantum computer hardware.

Using Eqs. (16) and (17), the computer time can be rewritten

Tc =

8<
:

T o+1
p

E

!1

o � I

D

��
R

D

�1

o

tg +
LbTp
D

9=
;N (20)

There are two possible limits to this equation. If �t can be made very small (from
the hardware point of view), then making the error small forces the computer time to
be dominated by gate switching. In this case, we want the factor

Z = (I=D)(R=D)1=o (21)

to be small.
If there is a lower limit to �t = �, and it is reached before the computer time is gate

switching dominated, then the computer time may be dominated by gate application. In
this second limit, we want L=D small, and to minimize the error E, we want (R=D)(�t)o

small. In this limit, each gate can only be applied for an integral number of the minimum
timestep �. Thus, to use an irrational method, one must approximate the method by
an integral method containing large integers, and so with a large D. Because �t = � is
�xed, the error E goes like R=D / Do, and thus is large for irrational methods. We thus
do not consider irrational methods in this limit.

To summarize, we want methods with small L=D and R=D.

6

5 3rd and 4th Order Formulae for exp
�PN

n=1An

�

From this analysis, we want to choose methods for which Z, or L=D and R=D are small.
Below we list the methods and their properties. We use the notation

(�a) (22)

to represent �
eaA1eaA2 : : : eaAN

��
(23)

if � = 1, and
(�a)T (24)

to represent �
eaA1eaA2 : : : eaAN

��
(25)

if � = �1. So, for example, the 2nd order method

�
eA1eA2 : : : eAN

� �
eAN : : : eA2eA1

�
=
�
eA1eA2 : : : eAN

� �
e�A1e�A2 : : : e�AN

��1
(26)

is represented by
(1)(1)T (27)

Note that the transpose of any method gives another equivalent method, as does
permuting the entries in the fundamental unit.

For odd order methods, the residue has an odd number of brackets in the commuta-
tors. So, because the transpose of an individual bracket is minus that bracket,

(odd order method) (same odd order method transpose) (28)

gives a method of one order higher. For example, we can make a 4th order method from
a 3rd order method, or a 6th order method from a 5th order method.

5.1 Integer solutions

The 3rd order integer methods that we have selected using the criteria of Section 4 are
given below.

3rd Order Methods
Z1
3 (1)T (1)(1)(1)(1)T (�2)T (1)(1)(1)

Z2
3 (1)T (4)(2)(�5)T (2)T (3)(2)(2)T (1)

Z3
3 (1)T (2)(2)(�3)T (1)T (2)(1)T

Z4
3 (3)(�4)T (1)(3)(2)T (1)

Z5
3 (5)T (7)(12)(�13)T (1)

7

D L I L=D R=D Z

Z1
3 6 10 9 1.67 0.2 0.9

Z2
3 12 22 9 1.83 0.6 0.6

Z3
3 6 12 7 2.00 0.4 0.9

Z4
3 6 14 6 2.33 1.7 1.2

Z5
3 12 38 5 3.17 98.8 1.9

And the 4th order integer methods are

4th Order Methods
Z1
4 (1)T (1)(1)T (�2)(1)T (1)T (1)T (1)T (1)(1)T (1)(1)(1)(1)(�2)T (1)(1)T (1)

Z2
4 (1)T (2)(1)T (�3)T (2)(2)(1)(2)T (2)T (�3)(2)T (1)(1)(1)T

Z3
4 (1)T (2)(3)T (1)T (�4)(3)T (3)(�4)T (1)(3)(2)T (1)

Z4
4 (6)T (�7)(1)T (1)(5)T (5)(1)T (1)(�7)T (6)

D L I L=D R=D Z

Z1
4 12 20 18 1.67 0.6 1.3

Z2
4 12 24 14 2.00 0.8 1.1

Z3
4 12 28 12 2.33 4.6 1.5

Z4
4 12 40 10 3.33 50.2 2.2

5.2 Irrational solutions

The equations that we have derived can be solved for irrational solutions. We have been
able to �nd the shortest 3rd order method analytically. It can be proven to be unique.
It is

(a1) (�a2)T (�a3)T (a4) (29)

where

a1 = 1

a2 = �1

6

�
5 �

p
13 + 2

q
5 + 2

p
13
�

a3 = 1= (1 + a2)

a4 = �a2 (1 + a2) = (3 + 2a2) (30)

Renormalising to give �1I = 1, we have method R1
3

a1 = 0:451525513208585723409578820
a2 = �0:630880954030002500791663663
a3 = �1:136710925213995714728206549
a4 = �1:219117392452583938929449032

(31)

8

accurate to 27 decimal places. This method has Z = 1:7.
From this 3rd order method, we can generate the 4th order method

(a1) (�a2)T (�a3)T (a4) (a4)T (�a3) (�a2) (a1)T (32)

We have also found short fourth order methods. We assume a solution of symmetric
form, using the ansatz �I�i+1 = ��i and aI�i+1 = �ai. For I = 6, this leaves us with
the equations

3X
i=1

�iai =
1

2
(33)

3X
i=1

�ia
3
i = 0 (34)

3X
i=1

h
a3i + 2�ia

2
i

�
�13 � �1i

�i
= 0 (35)

to solve.
Combining equations and setting �1 = 1, we �nd solutions of the form

a1 =
1

2 (�2x+ �3y + 1)
a2 = xa1

a3 = ya1 (36)

where

y = ��3

�
�2x

3 + 1
�1=3

(37)

and x has four possible values depending on the �i's. From our ansatz, �4 = ��3,
�5 = ��2, �6 = ��1, a4 = �a3, a5 = �a2 and a6 = �a1.

For �2 = ��3 = �1, x = �1 giving the method R1
4

a1 = 1
4

�
2 +

p
2
�
' 0:675603595979828817023843904

a2 = �1
4

�
2 +

p
2
�
' �0:675603595979828817023843904

a3 = �1
2

�
1 +

p
2
�
' �0:851207191959657634047687809

(38)

This method has been found previously by Yoshida [11] in the two-operator case, we see
here that it is also a method for an arbitrary sum of non-commuting operators. This
method has Z = 2:67.

For �2 = �3 = �1, x is the solution of

x5 + 3x4 + 3x3 � 3x � 3 = 0 (39)

giving the method R2
4

a1 = �1:075035037431900314780251056
a2 = �1:024607977441460486144230714
a3 = �0:550427059990439828636020342

(40)

9

This method has Z = 2:53, and is slightly better than the above method of Yoshida.
For �2 = ��3 = 1, x is the solution of

2x5 + 3x3 + 3x2 + 3 = 0 (41)

giving the method R3
4

a1 = 0:938925888779098070854126976
a2 = �1:002122279211397565598116356
a3 = �0:563196390432299494743989380

(42)

This method has Z = 3:56.
And �nally, for �2 = �3 = 1, x is the solution of

x9 + 3x7 + x6 + 3x5 + 3x4 + 3x2 + 1 = 0 (43)

giving the method R4
4

a1 = 1:087752928204421689142747144
a2 = �1:131212302433601022822197398
a3 = 0:543459374229179333679450254

(44)

This method has Z = 4:39.
We also searched numerically for other irrational solutions and found no short asym-

metric solutions (i.e. shorter than the symmetric solutions found analytically).

6 An E�cient Technique for Deriving Sub-optimal

Higher Order Methods

The technique for �nding higher order methods described above used a �rst order method
as a fundamental unit. We can also use higher order methods as fundamental units. This
makes it easier to derive very high order methods, but the methods will be sub-optimal in
the sense that we only generate a restricted set of solutions, which is unlikely to contain
the method that is optimal with respect to any given criteria.

The technique of using higher order fundamental units works as follows:
The method of order o from which we form the fundamental unit is

IY
i=1

�
eaiA1 : : : eaiAN

��i
(45)

and the fundamental unit is

"
IY
i=1

�
eaibA1 : : : eaibAN

��i#�
= exp

�b�1I

NX
n=1

AN + �bo+1r

!
(46)

10

Combining a succession j = 1; : : : ; J of fundamental units with parameters bj and �j
gives

JY
j=1

"
IY
i=1

�
eaibjA1 : : : eaibjAN

��i#�j
= exp

0
@ JX
j=1

�jbj�
1
I

NX
n=1

AN +
JX
j=1

�jb
o+1
j r

1
A (47)

Therefore, to obtain a method of order o+ 1, we require

JX
j=1

�jbj > 0 (48)

and
JX
j=1

�jb
o+1
j = 0 (49)

This technique can be iterated to get arbitrarily high order methods.
As an example, we start with the �rst order method

(1) (50)

by transposing, we get the second order method

(1) (1)T (51)

now, we solve the equations
JX
j=1

�jbj > 0 (52)

and
JX

j=1

�jb
3
j = 0 (53)

A simple solution to Eqs. (52 and 53) is 23 = 13 � 8. Ordering is not dictated by
the solution, so we choose the method which is its own transpose and hence 4th order
accurate h

(1) (1)T
i4 h

(�2) (�2)T
i h
(1) (1)T

i4
(54)

Again, we solve the equations
KX
k=1

kck > 0 (55)

and
KX
k=1

kc
5
k = 0 (56)

11

which have the simple solution 25 = 15 � 32. Again, choosing the ordering so that the
method is its own transpose, gives the 6th order method

�h
(1) (1)T

i4 h
(�2) (�2)T

i h
(1) (1)T

i4�16 h
(�2) (�2)T

i4 h
(4) (4)T

i h
(�2) (�2)T

i4
�h
(1) (1)T

i4 h
(�2) (�2)T

i h
(1) (1)T

i4�16
(57)

where I = 594.

7 4th and 5th Order Formulae for exp([A1; A2])

As a byproduct of our analysis, we can also use Eqs. (10-12) to search for approximations
to gates involving commutators. To do this, we set �2I > 0 and �XI = 0 for X 6= 2. An
approximation for a gate involving a commutator may be useful if only a subset of
the generators of a particular group is available in hardware, but a given algorithm
needs another generator of the group. For instance, if exp (�i�x�t) and exp (�i�y�t)
are available in hardware, but exp (�i�z�t) is not, then we need a way to generate

exp
�
�1

2 [�x; �y]�t
�
.

After some searching, we have been able to �nd one method for exp [A;B] to fourth
order. It is

(�2)T (2)T [(�1)(1)]12 [(1)(�1)]4 (58)

with residuals

�12 �11112 �21112 �11221 �22112 �12221 �22221
12.0 1.0 2.0 0.0 0.0 -2.0 -1.0

This method can be combined with its transpose to give a 5th order method.

8 A Simple Application

To illustrate our methods, we have applied �rst, second, third and fourth order methods
to the exactly soluble operator

e�i�t(�x+�y+�z) =

0
@ cos

�p
3�t

�
� i 1p

3
sin

�p
3�t

�
�(i+ 1) 1p

3
sin

�p
3�t

�
�(i� 1) 1p

3
sin

�p
3�t

�
cos

�p
3�t

�
+ i 1p

3
sin

�p
3�t

�
1
A
(59)

We used the �rst order method

Z1
1 = (1) =

�
e�i�t�xe�i�t�ye�i�t�z

�
(60)

12

0 1 2 3
-8

-6

-4

-2

0

2

log(t)

Figure 1: Here, we plot log(error) vs. log(time). Error is calculated according to Eq. (64).
The lines from top to bottom correspond to the 1st, 2nd, 3rd and 4th order methods of
Eqs. (60), (61), (62) and (63).

the second order method

Z1
2 = (1)(1)T =

�
e�i�t�xe�i�t�ye�i�t�z

� �
e�i�t�ze�i�t�ye�i�t�x

�
(61)

the third order method

Z1
3 = (1)T (1)(1)(1)(1)T (�2)T (1)(1)(1)

=

�
e�i�t�ze�i�t�ye�i�t�x

� �
e�i�t�xe�i�t�ye�i�t�z

� �
e�i�t�xe�i�t�ye�i�t�z

�
�
e�i�t�xe�i�t�ye�i�t�z

� �
e�i�t�ze�i�t�ye�i�t�x

� �
e2i�t�ze2i�t�ye2i�t�x

�
�
e�i�t�xe�i�t�ye�i�t�z

� �
e�i�t�xe�i�t�ye�i�t�z

� �
e�i�t�xe�i�t�ye�i�t�z

� (62)

and similarly for the fourth order method

Z1
4 = (1)T (1)(1)T (�2)(1)T (1)T (1)T (1)T (1)(1)T (1)(1)(1)(1)(�2)T (1)(1)T (1) (63)

As a measure of the error, we take the di�erence between the �x, �y and �z compo-
nents of the exact solution and our methods, ��x, ��y and ��z. We then calculate the
error

E =
q
(��x)

2 + (��y)
2 + (��z)

2 (64)

In Fig. (1), we plot the logarithm of the error as a function of the logarithm of the
time that the system was evolved for. The �rst order method results are uppermost
and higher order results lie underneath each other with fourth order results being the
lowermost plotted. �t = 0:01 for all methods.

13

Notice that the �rst order error oscillates once it reaches order 1. The rest of the
errors remain small throughout the simulation, with the fourth order error remaining
below 10�3 for the entire evolution.

The error for all methods goes as nR (�t)o+1, where n is the number of times the

method has been applied. Therefore, logE = log
h
R (�t)o+1

i
+ log n. For �t = 0:01,

this makes the y-intercept decrease by order �2 as the order of the method increases.
Since the time evolved is proportional to n, the slope of the errors is 1 for all methods.

9 Symplectic Methods

In the study of classical Hamiltonian systems, we can cast the evolution of the coordinates
qi and momenta pi of �elds or particles in the same language as we have done above for
quantum systems.

Write z = (qi; pi). Then the Hamilton equations for the system are

_z = fz;Hg (65)

where fa; bg is a Poisson bracket. Now, de�ne DHz � fz;Hg. The Hamilton equations
become

_z = DHz (66)

The formal solution to these equations is then,

z(t) = eDH tz0 (67)

Often, DH can be separated into kinetic and potential parts DH = DK + DV . In this
case, we have the formal solution

z(t) = e(DK+DV)tz0 (68)

Typically, symplectic methods approximate the above case (68), in which there are only
two operators in the exponential. Symplectic methods for two operators exist up to 8th
order in the expansion [11].

In our work, we have developed methods to approximate the case where there are an
arbitrary number of operators in the exponential. This is important for simulations on
both quantum and classical computers, since there can often be more than two terms
which do not commute in the Hamiltonian.

For example, any Hamiltonian of the form

H = gij(q)pipj + V (q) (69)

where gij and V are functions of the qi's, can have an arbitrary number of terms which
do not commute with each other.

14

A simple example of a quantum system where extra terms in the sum are necessary
is an Ising spin system with next-nearest neighbor interactions. Here, the Hamiltonian
becomes

H =
NX
i=1

(�i � �i+1 + �i � �i+2) (70)

In this Hamiltonian, none of the terms �i�2 � �i, �i�1 � �i, �i � �i+1 or �i � �i+2 commute.
Therefore, for this system, we can arrange the Hamiltonian to have, at best, four terms
which do not commute with each other.

10 Conclusions

The object of this paper has been to provide higher order approximation methods for op-
erators of the form exp

PN
i=1AN in terms of operators of the form exp (A1), exp (A2), : : :,

exp (AN). We have focused on approximation methods of this kind since they are partic-
ularly useful in quantummany-particle simulations for which the discretised Hamiltonian
on a quantum computer takes the form of an exponential of a sum of non-commuting
terms.

To �nd higher order methods, we have derived and solved equations for methods up
to 4th order. We �nd that the equations give a large number of methods, so we have
selected a small number of them based on what seem to us to be reasonable criteria and
presented them above.

As a by-product of our search, we have also been able to �nd higher order approx-
imation methods for operators of the form exp [A;B] in terms of operators of the form
exp (A) and exp (B). These may be useful for quantum gates where exp (A) and exp (B)
are available in hardware, but the gate exp [A;B] is desired for some particular algorithm.

Our analysis has also shown that there is a quick technique for deriving approximation
methods to arbitrarily high order involving the solution of relatively simple equations
at each order. We have also presented these results, but it turns out that they lead to
approximations that are far from optimal in the sense that there are many more gates in
these methods than should be necessary. That is, they are accurate to high order, but
relatively costly to implement.

As an example of how useful our approximations can be, let us consider a case in
which we want to apply an approximation method for time T = 1 with total error
E = 10�4. For a �rst order method, this means that we require about 5000 applications
of the method. For second order, we require about 30 applications. For our third order
method Z1

3 , we need 2 applications. And for fourth order method Z1
4 , one application of

the method is more than su�cient. This results in a reduction of orders of magnitude in
the computational cost of a given simulation or gate application.

Using our equations, it is possible to search for 5th order methods (and from these,
via transposition, to obtain 6th order methods). We made a number of attempts at
the search, but were unable to �nd any 5th order methods due to the large size of the

15

search space. Thus, the only methods of 5th order and higher that we found were those
methods mentioned above which tend to involve unnecessarily large numbers of gates.

Acknowledgements

This work was supported by the DOE and NASA grant NAG 5-7092 at Fermilab. We
would like to thank Tasso Kaper for bringing references [9] to our attention.

References

[1] P. W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Com-

puter Science, Santa Fe, NM, 1994, edited by Sha� Goldwasser (IEEE Computer
Society Press, Los Alamitos, CA, 1994), 124-134; SIAM J. Comput. 26, 1484-1509
(1997).

[2] J. Preskill, quant-ph/9712048.

[3] R. Laamme, E. Knill, W. H. Zurek, T. F. Havel and S. S. Somaroo, Phys. Rev.
Lett. 81, 2152-2155 (1998).

[4] L. Grover, Phys. Rev. Lett. 79, 325-328 (1997).

[5] B. M. Boghosian and W. Taylor IV, quant-ph/9701019; quant-ph/9701016; quant-
ph/9604035; D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2589-2589 (1997).

[6] R. P. Feynman, Int. Jour. of Theor. Phys. 21, 467-488 (1982).

[7] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586-2589 (1997).

[8] A. Steane, quant-ph/9708022; S. Lloyd, Phys. Rev. Lett. 75, 346-349 (1995); D.
Deutsch, A. Barenco and A. Ekert, quant-ph/9505018; A. Barenco, et. al., quant-
ph/9503016.

[9] D. Goldman and T. Kaper, SIAM J. Num. Anal. 33, 349-367 (1996). M. Suzuki,
Phys. Lett. A 146, 319-323 (1990); M. Suzuki, J. Math. Phys. 32, 400-407 (1991);

[10] Numerical Recipes, The Art of Scienti�c Computing, W. H. Press, S. A. Teukolsky,
W. T. Vetterling and B. P. Flannery, Cambridge University Press, 376-381 (1992).

[11] H. Yoshida, Phys. Lett. A 150, 262-268 (1990).

16

http://xxx.lanl.gov/abs/quant-ph/9712048
http://xxx.lanl.gov/abs/quant-ph/9701019
http://xxx.lanl.gov/abs/quant-ph/9701016
http://xxx.lanl.gov/abs/quant-ph/9604035
http://xxx.lanl.gov/abs/quant-ph/9604035
http://xxx.lanl.gov/abs/quant-ph/9708022
http://xxx.lanl.gov/abs/quant-ph/9505018
http://xxx.lanl.gov/abs/quant-ph/9503016
http://xxx.lanl.gov/abs/quant-ph/9503016

Appendices

A.1 Proof of lower bounds on integral method sizes

�
�1I
�p

=
IX
i=1

h�
�1i
�p � ��1i�1�pi

=
IX
i=1

h�
�1i�1 + �iai

�p � �
�1i�1

�pi

=
IX
i=1

2
4p�1X
q=1

p!

q!(p� q)!
(�iai)

q
�
�1i�1

�p�q
+ �p

i a
p
i

3
5 (71)

�i = �1. Therefore, if p is odd, then

IX
i=1

�p
i a

p
i =

IX
i=1

�ia
p
i = �pI (72)

and if p is even, then

IX
i=1

�p
i a

p
i =

IX
i=1

api =
IX

i=1

(1� �i) a
p
i +

IX
i=1

�ia
p
i =

IX
i=1

(1� �i) a
p
i + �pI (73)

Taking p = 2, the factor p!
q!(p�q)! , q = 1, is equal to 2, and the factor (1� �i) is 0 or

2. A 2nd-order method requires �2I = 0, therefore (�1I)
2
must be even, and so �1I must

also be even.
Taking p = 3, the factors p!

q!(p�q)! , q = 1; 2, are equal to 3. A 3rd-order method requires

�3I = 0, therefore (�1I)
3
must be a multiple of 3, and so �1I must also be a multiple of 3.

Taking p = 4, the factor p!
q!(p�q)!, q = 1; 2; 3, is even, and the factor (1 � �i) is 0 or 2.

A 4th-order method requires �4I = 0, therefore (�1I)
4
must be even, and so �1I must also

be even.
Taking p = 5, the factors p!

q!(p�q)!, q = 1; 2; 3; 4, are multiples of 5. A 5th-order method

requires �5I = 0, therefore (�1I)
5
must be a multiple of 5, and so �1I must also be a multiple

of 5.
Combining these �1I must be a multiple of 2 in a 2nd-order method, a multiple of 6

in a 3rd or 4th order method, and a multiple of 30 in a 5th-order method.

17

A.2 Formulae for the BX

2 's in terms of the commutators of A1

and A2

The Bp
2 are de�ned by

eaA1eaA2 = exp
1X
p=1

apBp
2 (74)

The Campbell-Baker-Hausdor� formula, Eq. (4), then gives

B1
2 = A1 +A2 (75)

B2
2 =

1

2
A12 (76)

B3
2 =

1

12
(A112 +A221) (77)

B12
2 �

h
B1
2 ; B

2
2

i
=

1

2
(A112 �A221) (78)

B4
2 =

1

24
A1221 (79)

B13
2 �

h
B1
2 ; B

3
2

i
=

1

12
(A1112 +A2221) (80)

B112
2 �

h
B1
2; B

12
2

i
=

1

2
(A1112�A2221� 2A1221) (81)

B5
2 = � 1

720
(A11112� 2A21112� 6A11221

� 6A22112 � 2A12221+A22221) (82)

B14
2 �

h
B1
2 ; B

4
2

i
=

1

24
(A11221�A22112) (83)

B23
2 �

h
B2
2 ; B

3
2

i
=

1

24
([A12; A112] + [A12; A221])

= � 1

24
(A21112+A11221�A22112�A12221) (84)

B113
2 �

h
B1
2; B

13
2

i
=

1

12
(A11112+A21112+A12221+A22221) (85)

B221
2 � �

h
B2
2; B

12
2

i
=

1

4
(� [A12; A112] + [A12; A221])

=
1

4
(A21112+A11221+A22112+A12221) (86)

B1112
2 �

h
B1
2; B

112
2

i
=

1

2
(A11112+A21112� 2A11221

+ 2A22112�A12221�A22221) (87)

18

A.3 A simple measure of the error

The error for a given method is given by Eq. (15)

r =
X
X

�XI B
X
N (88)

where X 2 f4; 13; 112g for a 3rd order method and X 2 f5; 14; 23; 113; 221; 1112g for a
4th order method.

r is a vector in the vector space of the commutators for which we do not know the
metric. We would like to have a scalar measure of the error, and thus must pick some
basis for the vector space. We choose the basis to be the commutators of A1 and A2.
This basis is simple and spans the vector space of the BX

N 's without redundancy. Since
this basis spans the space of the BX

N 's, we do not need to go to N larger than 2. For
N = 2, we can re-express r as

r =
X
Y

�YAY (89)

where
Y 2 f1112; 1221; 2221g (90)

for a 3rd order method and

Y 2 f11112; 21112; 11221; 22112; 12221; 22221g (91)

for a 4th order method. The formulae for the �Y 's in terms of the �XI 's are given in
Appendix A.4. In this basis, our measure of the error then becomes

R �
sX

Y

(�Y)2 (92)

19

A.4 Formulae for the �Y 's in terms of the �X
I
's

For N = 2,
r =

X
X

�XI B
X
2 =

X
Y

�YAY (93)

Therefore, using the formulae in Appendix A.2, we obtain

�1 = �1I (94)

�2 = �1I (95)

�12 =
1

2
�2I (96)

�112 =
1

12
�3I +

1

2
�12I (97)

�221 =
1

12
�3I �

1

2
�12I (98)

�1112 =
1

12
�13I +

1

2
�112I (99)

�1221 =
1

24
�4I � �112I (100)

�2221 =
1

12
�13I � 1

2
�112I (101)

�11112 = � 1

720
�5I +

1

12
�113I +

1

2
�1112I (102)

�21112 =
1

360
�5I �

1

24
�23I +

1

12
�113I +

1

4
�221I +

1

2
�1112I (103)

�11221 =
1

120
�5I +

1

24
�14I � 1

24
�23I +

1

4
�221I � �1112I (104)

�22112 =
1

120
�5I �

1

24
�14I +

1

24
�23I +

1

4
�221I + �1112I (105)

�12221 =
1

360
�5I +

1

24
�23I +

1

12
�113I +

1

4
�221I � 1

2
�1112I (106)

�22221 = � 1

720
�5I +

1

12
�113I � 1

2
�1112I (107)

20

A.5 Tables of Residual Errors

3rd Order Integer Methods

�1 �1112 �1221 �2221
Z1
3 6.0 -1.0 0.5 0.0

Z2
3 12.0 -4.0 -3.0 5.0

Z3
3 6.0 -2.0 1.5 1.0

Z4
3 6.0 0.0 4.5 9.0

Z5
3 12.0 -864.0 792.0 180.0

�11112 �21112 �11221 �22112 �12221 �22221
Z1
3 2.2 3.1 -3.2 5.3 0.1 -1.3

Z2
3 13.4 104.2 105.6 26.1 84.2 28.9

Z3
3 0.7 5.1 3.3 1.8 3.1 1.2

Z4
3 2.7 8.1 -2.7 10.8 -6.9 -13.8

Z5
3 -3801.6 -1900.8 2505.6 -1166.4 499.2 206.4

3rd Order Irrational Method

�1 �1112 �1221 �2221
R1

3 1.0 0.012008 -0.052816 -0.058414

�11112 �21112 �11221 �22112 �12221 �22221
R1

3 0.001754 0.003500 -0.009304 0.017412 -0.014311 -0.026310

4th Order Integer Methods

�1 �11112 �21112 �11221 �22112 �12221 �22221
R1

4 12.0 -1.6 0.2 -3.4 5.6 -1.8 -2.6
R2

4 12.0 3.4 6.2 3.6 3.6 2.2 -4.6
R3

4 12.0 26.4 40.2 -5.4 21.6 16.2 5.4
R4

4 12.0 -369.6 -220.8 309.6 -86.4 259.2 86.4

4th Order Irrational Methods

�1 �11112 �21112 �11221 �22112 �12221 �22221
R1

4 1.0 -0.000414 -0.008682 -0.007027 -0.026045 -0.026732 -0.004684
R2

4 1.0 -0.022171 -0.013256 0.014902 -0.009176 0.002796 0.001717
R3

4 1.0 -0.001297 0.038072 0.035227 -0.080082 -0.079215 0.001270
R4

4 1.0 0.002074 0.196582 0.194095 -0.052861 -0.050727 -0.002155

21

